
International Journal of  Theoretical Physics, Vol. 17, No. 12 (1978), pp. 957-974 

The Mathematical Foundations of Dimensional Analysis 
and the Question of Fundamental Units 

Peter Szekeres 

Department of  Mathematical Physics, University of  Adelaide, 
South Australia 5001 

Received September 17, 1978 

The algebra of physical (dimension-carrying) quantities is axiomatized in 
a scheme called a @ algebra. Systems of units (gauges) are readily described 
in this algebra, and the set of transformation of units (the gauge group) is 
discussed. The notion of the (gauge) invariance group of a function on the 
q) algebra is described, and all functions having a given invariance group 
are canonically deduced in what is here called the �9 theorem. The scheme 
is applied to classical mechanics in order to understand better in what 
sense mass,, length, and time are "irreducible" physical quantities. The 
latter two are found to be so, but the former is not. Other theories, 
relativity and quantum mechanics, are also briefly discussed and are shown 
to reduce this fundamental set of units even further. 

1. I N T R O D U C T I O N  

One o f  the first things one learns to handle  in e lementary  physics is 
d imens iona l  analysis.  We  are taught  tha t  all physical  quanti t ies  are referred 
to cer tain basic  "un i t s "  o f  mass,  length, t ime, charge,  etc., and  tha t  in any 
re la t ional  equat ion  among  physical  quanti t ies  all terms mus t  have the same 
"d imens ions"  relat ive to these units.  Subsequent ly  we use these ideas no t  
only  as a check on the possible  val idi ty  o f  such relat ions but  also as a tech- 
nique bo th  for  es tabl ishing rela t ions and for  es t imat ing the orders  o f  
magni tude  o f  physical  quanti t ies  in a given physical  s i tuation.  

A l t h o u g h  every physical  quant i ty  has an associa ted  unit  which may  be 
de te rmined  by  one or  ano ther  convent ion,  some units appea r  to be more  
fundamen ta l  than  others.  Indeed  it soon becomes appa ren t  tha t  units m a y  
in general  be referred to units of  mass,  length, and  t ime;  for  example,  the 
uni t  o f  charge (the e.s.u.) may  be defined as tha t  charge which  produces  
an accelera t ion o f  1 cm sec-2 on an equal  charge carr ied by  a par t ic le  o f  
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mass 1 g placed at a distance of 1 cm. In this analysis charge obtains the 
dimensions M 1/2 L 3/2 T -1. One might well ask, however, whether such a 
reduction is always possible. For there seems nothing in principle that would 
prevent physical quantities from possessing attributes that could not be so 
reduced. What in fact, if anything, is so magical about this number 3 ? 

The present discussion will be principally restricted to the classical 
mechanics of point particles. There the problem is to find the motions of 
n particles as the solution of certain second-order differential equations. As 
the solution of the problem is to find the positions (in units of length) of 
the particles as functions of time, it is not surprising to find length and 
time as two irreducible physical units. Strictly speaking these will turn out 
to be the only two. There are practical circumstances that make it a useful 
convention to regard mass as irreducible too, but the existence of a 
"universal" law (gravity) provides a natural way of reducing the unit of mass 
to those of space and time. 

The terms used in the above discussion ("units," "dimensions," "reduc- 
tion") are unfortunately a little vague, and it is a major aim of this paper 
to express them in more precise axiomatic terms. The scheme presented 
here is by no means unique and mirrors in many ways the axiom schemes 
of other authors (Kurth, 1972; Whitney, 1968; Drobot, 1953; Brand, 1957; 
Krantz et al., 1971), but it has the advantage of relative simplicity and of 
focusing attention on the group theoretical aspect of gauge (scale) 
transformation. 

In Section 2 we formulate the algebra of physical quantities as a 
mathematical structure which we call a q~ algebra. Gauges and gauge trans- 
formations are defined in Section 3 as the natural dual concept, and the 
notion of the gauge group is introduced. In Sections 4 and 5 we prove a 
classic theorem, here called the q) theorem, 1 giving the general structure of 
ap functions with a given invariance group. The concept of the power exten- 
sion of a �9 algebra is introduced in Section 6, and natural procedures for 
reducing and increasing the dimension of the invariance group are discussed 
in the context of this extension. The next two sections concern the special 
case of Newtonian particle mechanics, and the validity of our opening remarks 
is discussed within the formalized setup. Finally there is some discussion of 
nonclassical mechanics (relativity and quantum mechanics), and what the 
existence of other fundamental units might mean for physics. 

2. el, A L G E B R A S  

Physical quantities will be assumed capable of certain operations, in 
particular that they may be multiplied by real numbers (i.e., scaled and 

1 The "classic" theorem of which this is essentially a restatement is the famous 
Buckingham ~ theorem (Buckingham, 1914; Bridgeman, 1922). The new setting 
given here has led to the slight renaming. 
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multiplied by each other  to fo rm physical quantities o f  new types (e.g., 
m o m e n t u m  -- mass  x velocity). These operat ions  may  be summed up in 
the axioms of  an algebraic structure which we shall call a �9 algebra. 

Definition. A qa algebra is a set @ together  with a binary opera t ion 
called mult ipl icat ion (the produc t  o f  p and q being as usual denoted pq) 
such that  

(1) q~ contains the real numbers ,  denoted R. 
(2) I f  a, b E R then ab is the usual p roduc t  in the field of  real numbers .  
(3) Fo r  all p,  q, r s �9 we have 

pq = qp 
(pq)r = p(qr) 

l p = p  

(4) I f q p  = p a n d p  # 0p, t h e n q =  1. 

Tha t  is, (I) is a commuta t ive  semigroup with identity having R as a 
subsemigroup.  Sometimes the opera t ion o f  taking powers  p~ (a e R) is also 
included as a basic opera t ion (e.g., Kur th ,  1972), but  there is an awkward  
feature in taking powers  o f  a negative number ,  which is in general no longer 
a real number  (or even unique). 2 Fur the rmore  there is a sense in which such 
an extended not ion will emerge as natural  (Section 6), so there is no need 
to impose  it at  the outset. 

3. G A U G E S  A N D  G A U G E  T R A N S F O R M A T I O N S  

Definition: A gauge on gP is a map  X: (I) ~ R such that  

(i) X(a) = a for  all a ~ R ,  
(ii) X(pq)  = X (p )X(q )  for  all p,  q ~ q), 

(iii) X(p)  = 0 implies p = 0p. 

Tha t  is, X is a �9 h o m o m o r p h i s m  o f  (O onto R (in algebraic terminology,  
X is in the dual space of  ~).  A gauge X determines for  each p # 0p a unique 
unit ux(p) ~ (P such that  

p = X(p)ux(p) 
Clearly 

ux(pq) = ux(p)ux(q) for  all p,  q ~ 

Fur thermore ,  since it follows at  once that  

ux(ap) = ux(p) for  all a # O, a ~ R 

2 An alternative approach is to include only positive real numbers in the definition of 
a q~ algebra. This allows powers to be taken but has the later drawback that any 
physical quantity and its negative have to be regarded as "dimensionally different." 
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it is clearly consistent to adopt  as a definition 

ux(Op) = ux(p) for all p r 0p 

Then each gauge X associates a well-defined unit Ux(r to the whole ray 
= Rp generated by p, such that 

ux(~) = ux(q) for all q ~ 
Evidently ux(R) = 1. 

I f  X and Y are gauges on qb let a: �9 --~ R be the function defined by 

ux(p) = a(p)uy(p) for all p E a9 

Gauge values transform in the reverse direction, 

Y(p)  = a(p)X(p)  for all p ~ qb 

The function a will be called a gauge transformation. It  satisfies 

a(pq) = a(p)a(q) for all p, q ~ qb 
~(R) = 1 

so that c, defines a function a(r mapping rays of r to R. Conversely, given 
a function a satisfying the above two conditions then for any gauge X, Y = 
aX is clearly also a gauge, so that a may be regarded as being a map of 
W(qb), the set of  all gauges on qb, into itself. 

The gauge transformations form an Abelian group under multiplication 

~[3(p) = c~(p)[3(p) 

called the gauge group G(d)) o f  q~. 
We will in general only be concerned with "positive definite" gauge 

transformations, 

G§ = {~ ~ G(qb); ~(p) > 0 for al lp ~ qb) 

G+(~)  is a subgroup of G(~),  called the proper gauge group. Any gauge X 
splits qb into positive and negative halves 

§ ( x )  = {p ~ c~; x ( p )  > o), c o - ( x )  = ~p ~ ~ ;  x ( p )  < o) 

the splitting being invariant under the action of  the proper gauge group, i.e., 

qb~(X) = q~(~X)  if and o n l y i f u  ~ G+(~)  

4. �9 F U N C T I O N S  A N D  I N V A R I A N C E  G R O U P S  

By a physical variable or ray in �9 we shall mean a subset 

= Rp = {ap; e ~ R} for some p ~ 
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D e f i n i t i o n .  A C~ f u n c t i o n  is any function 

F : r  x r x . . .  x r R 

where r r  r are physical variables (not necessarily distinct). 
Let X be any gauge on q5. We define the r e p r e s e n t a t i o n  of F in the gauge 

X as the real function 

F x  : R x R x . . .  x R = R " - - >  R 

defined by 

That is, 

F x ( x l ,  . . . ,  x , )  = F ( x w g r  . . . ,  x , u x ( r  

F ( p l  . . . .  , p~) = F x ( X ( p O , . . . ,  X(p~)) 

for any p~ E r ( i - -  1 . . . . .  n). Under a gauge transformation Y--  ~X it 
follows at once that 

F ~ x ( % X l  . . . .  , % x ~ )  = F x ( x l  . . . .  , x , )  (4.1) 

where ~i = ~(r 
We can also consider C o - v a l u e d  q~ f u n c t i o n s ,  

F: r x - - .  x r162 

where r is any physical variable in @, having representation F x :  R ~ - +  R 

defined by 

r x ( x l ,  . . . ,  x , )  = X ( F ( x l u x ( r  . . . ,  XnUx(O,))  

and transforming under gauge transformations by 

F ~ x ( ~ l x l ,  . . . ,  ~ , x , )  = ~ o r x ( x l  . . . . .  x , )  

[~0 = '~ ( r  
E x a m p l e .  If  r is any physical variable, we may define the function 

+ : r  • r 1 6 2  

by 
+ (p, q) ---- p + q = IX(p) + X ( q ) ] u x ( r  

for any p, q ~ r and any gauge 2". It is trivial to verify that this definition 
is independent of the choice of gauge, and defines a natural (one-dimensional) 
vector space structure on each ray. Its representation in any gauge X is 
clearly 

+ x ( X l ,  x2)  = x l  + x2  

Addition of quantities from different rays cannot be performed in any such 
(gauge-invariant) manner. 

For  the time being we will restrict ourselves to ordinary (R-valued) 
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~b functions. If  F is any �9 function, let Gv be the set of all/3 e G+(qb) such 
that 

F ( f l l p l ,  . . . ,  /3,~p,~) = F ( p l  . . . . .  p,,) 

for all p~ E ~b~, where we have set/3~ =/3(q~) > 0. In any gauge X we may 
write this condition as 

F x ( [ 3 a X , , . . . , / 3 , x , )  = F x ( x i  . . . .  , x , )  (4.2) 

for all x l , . . . ,  x,  e R. 
GF is clearly a subgroup of G+(r and using (4.1) and (4.2) it is a 

straightforward matter to verify that for any pair of gauges X, Y 

r y ( x i ,  . . . ,  x , )  = F x ( x i  . . . .  , x , )  

for all x z , . . . ,  x ,  e R if and only if there is/3 E GF such that Y =/3X. 
We call GF the t o t a l  i n v a r i a n c e  g r o u p  of F. By its action on gauges it 

splits W(q~), the set of all gauges on O, into equivalence classes (the orbits 
of GF), two gauges X and Y being equivalent if and only if the representations 
of F in X and Y are identical. 

This group Gv is somewhat large, indeed it may be infinite dimensional. 
However, since only its restriction to the r subalgebra generated by 
r . . . .  , r is really of any relevance, we may without serious loss of generality 
fix attention to the set 

HF = {(/31 . . . . .  /3~);/3~ = /3(4,) for some/3 ~ Gv} 

H v  is clearly a multiplicative subgroup of (R+) ", where R + is the multi- 
plicative group of positive real numbers, which we shall call the i n v a r i a n c e  

g r o u p  of F. Assuming F to be continuous (in the obvious sense that F x  is 
continuous for any gauge X) it follows from (4.2) that HF is a closed sub- 
group of (R+) ". It is therefore an Abelian Lie subgroup and its connected 
component H~ is isomorphic to (R+y for some r ~< n. We say r is the r a n k  

of the �9 function F. [It may of course transpire that HF is a discrete group, 
e.g., let n = 1, F x ( x )  = sin In x. Then Fx([3x) = Fx(x) if/3 = e ~"~, n integral; 
H~ consists of just the identity and the rank of F is 0.] 

If  F has rank r, we may set 

~, = / 3 ~ ( t l , . . . ,  tO (tA > O, A = 1 , . . . ,  r) 
with 

and 

/3,(1, 1 , . . . ,  1) = 1 

~ # 1 ,  . . . ,  t r ) [3~(Sl  . . . .  , S t )  = [ 3 , ( t l S l  . . . . .  t r sT)  

for all ta, sA ~ R +. Differentiating the last relation with respect to sA and 
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setting s~ = s2 . . . . .  sr = 1, gives 

fl,(tl . . . . .  tr)b~A = tA -~A 

where 

~/3~(SA) (4.3) 

The equation for/3~(tA) easily integrates to give 

fl~ = 1-~ tAv,a (4.4) 
A = I  

Since the map (h . . . .  , t~) -+ H~ is an isomorphism [i.e., an injective map of  
(R+) ~ into (R+) ~] it is clear from (4.3) that the n • r matrix b~A has rank r. 

5. T H E  �9 T H E O R E M  

The following theorem gives the general structure of  q) functions. 

Theorem.  Let F be any q5 function of  rank r, X any gauge on 
�9 . Then the representation in X of  the restriction of  F to the positive 
half q~ + (X) determined by X has the form 

F x ( x l  . . . .  , x . )  = P x ( y l  . . . .  , y . - r )  (x ,  > o)  

where 

Yp = ~ I  x~'~ (O = 1 , . . . ,  n - r)  
f = 1  

for some real coefficients % forming a matrix of  rank n -  r. 
Conversely if Fx  has this form for any gauge X then F has rank r. 

Proof.  Suppose F has the invariance group HF of  dimension r. Then 
with the conventions of  the previous section, we find, on substituting (4.4) 
into the invariance condition (4.2) and differentiating with respect to ta at 
tl . . . . .  tr = 1, that 

Oxi x i b ~  = 0 (5.1) 

Let B be the r-dimensional subspace of  R n spanned by the (linearly 
independent) vectors b~l , . . . ,  b~. By Schmidt orthogonalization we may 
find r vectors a~a spanning B such that 

~ a~AbiB = 8AB (5.2) 
t=J .  
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and n - r linearly independent vectors e~o (o = 1 , . . . ,  n - r) spanning the 
orthogonal complement B" such that 

~e~ob~a = 0 (5.3) 
i = 1  

Introduce a new set of variables yo, uA defined by 

In ua = ~ a~a In x~ "g (5.4) 

In yp = ~ c~ o In x~ 

(the need to restrict attention to & positive is clear at this stage if we wish to 
continue with real variables). Since the n x n matrix whose columns are 
a~ . . . . .  , a~r, c~1,..., c ~ _ ,  is dearly nonsingular the variables ua, yo are 
independent, whence 

~ S f x  Ofx ~Fx ~ afx 
-~x~ x~= ~. Olnx~ = ~O--F~B aiB + ~'O-~ypc~o 

and substitution in (5.1) gives, on using (5.2) and (5.3), 

aFx = 0 
e, In u~ 

Hence 
Fx = & ( Y l , . . . ,  Y, - , )  

for some function fix, as required. 
The converse follows by essentially reversing the above steps. If  Fx 

has the form given in the statement of the theorem we may define b~.4 
(A = 1 , . . . ,  r) by equation (5.3), and it is easy to verify that 

F , , O 3 ~ x l ,  . . . ,  I ~ , x , )  = F x ( x ~ ,  . . . ,  x , )  

for all/3~ given by 
/3, = 1--'[ t2,~ 

A 

Of course it is a straightforward matter to extend the theorem to 
negative ranges of some or all of the arguments by performing an indefinite 
(sign-changing) gauge transformation which makes all arguments positive, 
applying the theorem and then transforming back to the original gauge. 

6. POWER EXTENSIONS OF �9 ALGEBRAS 

Let �9 be any �9 algebra, X any gauge on ~, �9 +(X) the positive half 
of �9 determined by X. We define the power extension of �9 relative to X, 
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denoted (b(X), as the �9 algebra generated from the set of all formal powers 

{pa; p �9 d~+(X),  a �9 R}  
subject to the rules 3 

(i) (pq)a = p~q,~ 
(ii) p,~pb = p~ + b 

(iii) if a �9 R +, b �9 R then a b �9 R + has the usual value e b~" ~ 

The original qb algebra appears naturally embedded in cb by adopting the 
convention 

pl = p for all p �9 (b + (X) 

It also follows at once from condition (4) in Section 2 that p0 = 1 for all 
p �9 ~+(X).  

The power extension is dependent on the choice of gauge X, but is 
clearly invariant under the action of  the proper gauge group, 

(~(X) = +(~X) for all ~ �9 G+(dg) 

We might also contemplate the power extension of  +, but this becomes 
naturally identified with (b itself if we adopt the further convention 

(p~? = p~b for all p �9 qb + (X) 

It then follows that this relation holds for all p ~ ++(X),  and so +(X) is 
in a natural sense the m a x i m a l  power extension of  �9 relative to X. 

The gauge X may be extended in a natural way to a gauge on (b by 
setting 

X ( p  ~) = ( X ( p ) )  ~ for all p �9 qb + (X), a ~ R 

ff all "positive" gauges Y = aX ,  ~ �9 G+(~b), are extended in the same way 
then there is a natural sense in which we may identify the gauge groups 
G+(O) and G+((b), all proper gauge transformations ~ on �9 also being 
required to satisfy 

a(p ~) = (a(p))  ~ for all p �9 cb + (X), a ~ R 

The advantage of shifting attention to the power extension is that if 
GF is the total invariance group of any �9 function F, then there exist physical 
variables/~1,. �9 tZr �9 + such that for each/3 �9 Gv 

/3((~) = /3(]-L[ t zah~  ( i =  1 . . . .  , n  >>. r)  

a In modern algebraic language we could define ~(X) as a suitable factor algebra of 
the free 69 algebra generated by all formal powers, but this technical refinement 
hardly seems necessary here. 
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(notation as in Section 4). The ffA could be defined (though there is no such 
unique specification) by 

i 

where the coefficients a~a are defined from equation (5.2). We may say that 
each physical variable r appearing in the argument of  F is of " type" 

1--I tzAb~a 
A 

The original question of this paper may now be reformulated as follows. 
Is the total invariance group of physics Gvh~ such that every physical 
variable appearing in the equations of physics is of type ff~A% c, where 
tz, 2,, T are three physical variables (called of course mass, length, and 
time !)? In particular, is Hphy~ three dimensional ? 

Before turning our attention to this question, we conclude this section 
by discussing two procedures for altering the rank of a �9 function. 

(a) Reduct ion o f  the R a n k  o f  a rb Function.  Let F be a �9 function of 
rank r (notation as in Sections 4 and 5), X any gauge. Define the positive 
rays r + . . . .  , r of +(X) by 

r + = ~J~ r176 
A = I  

and let 

[o  = 1 . . . . .  n - r ,  r  - r c~ + + ( x ) ]  

h~: r + x . . .  x r -+ r 

be the natural surjections 

h ~ ( p l ,  . . . ,  p , )  = 1--J. p~ ' "  
f. 

where p~ ~ r +. 
Then the @ theorem may be restated as saying that there exists a r 

function 

P: r x . . .  x r  R (r = Re, +) 

such that the restriction of  F to @+(X) is given by 

F ( p l  . . . .  , p,~) = P ( h l ( p l  . . . .  , p~) , . . . ,  h~_~(pl . . . .  , p~)) 

To see this, set 

-r �9 �9 q , - , )  = Px(X(q~) . . . .  , X ( q , _ , ) ) ,  (qo + CD +) 

which is easily verified to be independent of the choice of gauge X, and 
apply the @ theorem (/~x is here given from the qb theorem, but as it is 
clearly also the representation of j0 in the gauge X the notation is quite 
consistent). We may regard F as having been replaced by the (b function 
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f depending only on n - r variables. It  clearly has rank 0, i.e., Hp is 
zero-dimensional.  

A similar argument  may be used to show that  if  H i  is any r ' -d imen-  
sional subgroup of  HF then F may be reduced to a (b function F '  dependent  
on n - r '  variables and whose rank has been reduced to r - r ' .  

(b )  E x t e n s i o n  o f  t h e  R a n k  o f  a q~ F u n c t i o n .  I f  F is a qb function o f  
rank r then its rank may be increased to r '  = r + m by the introduct ion o f  
m new variables to give a kind o f  reverse o f  the above procedure.  Fo r  
suppose we wish to make F invariant under  an extended group G) D 
G~(dim H~ = r, dim H )  = r '  = r + m). A straightforward application o f  
linear algebra implies that  there exist coefficients b'~ (a = 1, . . . ,  m) forming 
a real matrix o f  rank m, such that all (/3~ . . . .  ,/3~) ~ H )  ~ are given by 

N = I ~  so~4, (s~ E R+,/3~ ~ H~) 

Let q~' be the �9 algebra generated by the addit ion o f  m new (independent) 
physical variables ~1 . . . .  ,7'm to qb, and let ~[ be rays in cb' defined by 

~ = ~, 1-I 7: ~176 

with natural surjections 

k , :  (~'~ x ~,~ x . . .  x 7m ~ (~ 

defined by 

k , ( p ; ,  g~ . . . .  , gin) = P; ~ g b',, 

N o w  we define the + '  function 

F ' :  ~1 x . . .  x ~ x 71 x . . .  x ~'m--->R 

by 

where 

t 

F ' ( p ; ,  . . . ,  p,~, g l ,  . . . ,  gin) = F ( p l  . . . .  , Pro) 

p~ = k~(p;  gl  . . . .  , g,~) 

This function has the natural  relation to F that  for any gauge X on ~ '  

t 
r ~ ( x ' l  . . . .  , x,~, Y l  . . . . .  Ym) = F x ( X l ,  . . . ,  Xm) 

where 

In  particular, 
~Z 

V ' ( x l  . . . .  , x , ,  1 , . . . ,  1) = r x ( x l , . . . ,  x , )  

so that  the representation o f  F '  in any gauge contracts to the representation 



968 Szekeres 

of F in that gauge precisely for unit values of the new variables. The in- 
variance group of F '  consists of (n + m)-tuples (fi'~,..., fi'~+m) such that 

i.e., 

whence 

F ' (~ ;p ; ,  ~.+ og~) = F'(p; go) 

F(fl~ I~fl (fl'.+~)b',~p~ ) = F'(p~) 

t - - 0 "  p:-- p, T I  ,o 

Setting/3~+a -- s2 ~ we have the invariance of F '  under G~, and the rank of 
F' is r + m. The new variables ~,a are often called "universal constants." 
This terminology may look a little peculiar in that the 7~ are variables 
rather than constants, but the reason will emerge from specific examples 
in Section 9. We shall call them universal parameters. 

7. CLASSICAL MECHANICS 

The assumptions made in setting up Newtonian mechanics for point 
particles may be listed as follows: 

(1) There is a physical variable r called time. 
(2) There is a physical variable A called length. 

These two assumptions are independent of the notion of  a particle (taken 
here to be a basic undefined concept) and merely reflect our faith in the 
physicist's ability to construct reliable chronometers and rods with which 
to map out space and time. 

(3) For  every pair of particles A and B there is defined a map 

tAB: ~" ----> A 

for any t e % rAB(t) is called the distance between A and B at time t. 
(4) For every particle there is a map (its path) 

r :  r - - - ~ Z  ~ A x A x A 

r(t) = (x(t), y(t), z(t)) being called the position of  the particle at 
time t, such that if ra and rB are the paths of A and B then 
tAB(t) = {[Xa(t) -- xB(t)p + [yA(t) -- y~(t)] 2 + [ZA(t) -- zB(t)12} 1/2 

The additions and subtractions in the latter expression are well defined by 
the example in Section 4, while the taking of powers is well defined within 
the power extension of the cI) algebra spanned by A and ~-. The path maps, 
once postulated, are not uniquely determined by the requirement (4), but 
all such maps are related through (time-dependent) translations and 
rotations of  axes. 
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We also define the velocity and acceleration of any particle as the maps 

i': ~'--+ X~ "-1, i:: ~'-+ Xr -2 

given by 
f(t) = lim h- l [ r ( t  + h) - r(t)l 

hsz,h~O 

i:(t) = lim h-l[~(t + h) - ~(t)] 
hgz,h'--~O 

provided of course that the respective limits exist. 
So far only kinematics of point particles has been discussed. Dynamics 

is introduced by the following assumption. 
(5) For any set o fn  particles there exist m physical variables ~1 . . . .  , ~bm 

(called internal parameters) and n functions 

f~:X x X x..-x X x r x...x ~m--*XT-2 

n ~ s  

called laws o f  force, such that there exist q~ E ~b~ (a = 1 , . . . ,  m) 
for which 

fi(rl(t) . . . . .  rn(t), q1 . . . . .  qm) = i~(t) (all t e ~) 

q l , . . . ,  qm are called the values of the internal parameters for the 
particles in question. 

Our "laws of force" are actually "laws of acceleration" (i.e., force per 
unit mass). We assume them to depend only on the positions of the particles, 
but dependence on their velocities could easily be incorporated by including 
n copies of Xr-1 in the definition of  fi. The various internal parameters are 
here assumed to be a property of the system as a whole, but in most prac- 
tical cases they split up into sets of parameters (such as charge, mass, 
quadrupole moment, etc.) given n at a time and assigned to each particle 
separately. 

Now for any pair of values L0 ~ ~, To ~ r (choice of  units of  length 
and time) let us set 

fm(Lo, To, r l , . . . ,  rn, ql, �9 �9 q,,) = f~(r~,..., r~, q ~ , . . . ,  qm)Lffj~To 2 

Clearly fm define �9 functions 

f~o: '~ x ~- x X ~ x r x...x C m - + R  

Their total invariance group G~ is the set of  gauge transformations/3 such 
that 

fm(sro, tTo, srj, fl~q~) = fm(Lo, To, rj, q~) 
where 

#(,~) = s, /3(~-) = t, and /3($~) =/3~ 
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or equivalently such that 

f,(srj, fiaq~) = st - 2f,(rj, q~) (7.1) 

The latter equation shows that Gf is purely determined by the original 
functions f,, and is independent of the choice of Lo and To. It is the group 
of gauge transformations preserving the functional form of the X repre- 
sentation of the (kr-2-valued) q~ functions f~, 

f,x(Xl, �9 �9 x~, Yl . . . . .  Ym) = X(f,(XjUx(k), y~ux(r  

The invariance group Hf is deafly isomorphic to the set of (m + 2)- 
tuples 

{(S,  t,  f l l  . . . . .  t im);  f l()t)  = S, [~('r) = t, fl(tfia ) = fJa, fJ ~ af} 

Now there is no loss of generality in taking H~ to have dimension less 
than or equal to 2, for if its dimension were greater than 2 then the sub- 
group H~ obtained by setting s = t = 1 (i.e., leaving the units of length and 
time alone) would have dimension r '  >/ 1, and by the qb theorem as discussed 
in Section 6 the �9 functions f~0 could be reduced to �9 functions f,0 depending 
on a fewer number of internal parameters 

f ~ o : k  x T X X ~ X /z 1 X . ' . X  tZm_~,-~R 
where 

/~ = 1-~ ~b~-~ ( a = l  . . . . .  m - r ' )  

for some coefficients C,a. Clearly then the original functions f, could also 
be reduced, and the original set of internal parameters ~1 . . . . .  ~b m would 
not be minimal for describing the system. 

If  the dimension of Hf is 2 we have essentially accomplished the original 
objective discussed in Section 1. For there must exist k~, l~ such that 

and any gauge X determines a correspondence 

gx:  ~ -~ )tk~z~ 

defined by 

satisfying 
gx(qa) = X(qa)ux(h~)Ux("/~) 

gBx = gx 

for all f le  Gf. That is, the correspondence is unchanged by any gauge 
transformation that leaves the X representation of f, invariant. It is in 
this sense that all physical quantities have been reduced to length and time. 

If  the dimension of Hf is less than 2, all physical quantities may be 
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reduced to an even smaller set (possibly all scalars if  the rank of f is 0). 
In this case the theory would have incorporated in it a fundamental unit 
of  length or time or some combination of  the two. However, one could 
always raise the dimension of the group back to 2 by introducing a universal 
parameter  or two in the manner described in Section 6 to act as a further 
internal parameter. 

8. T H E  R O L E  OF MASS 

Consider now a typical example from classical mechanics, the case of  
n charged massive particles subject both to Coulomb's  inverse square law 
of electrostatic repulsion and to their mutual gravitational attraction (also 
inverse square law). The internal parameters split into two sets i f1 , . . . ,  ff~ 
and ~1,. �9 % (called the masses and charges, respectively), and the law of 
force is 

f i : X  n x f f l  x , . .  x f in  x E~ x . . .  x ~ n - - > X ~  " - 2  

where 

( eiej~. 
f , ( r l , .  � 9  r~, m l , . . . ,  rn~, e l , . . . ,  en) = ~ my - -  -~-i ](rj- - r i ) r , 7  8 

The invariance group is easily seen to be [from equation (7.1)] 

~(;0 = s, ~(-~) = t, ~O,J) = s 3 t - L  ~(~J) = s 3 t - ~  

Thus we may regard both mass and charge as having dimensions (length) 3 
( t ime)-L However, it is frequently desired to allow mass to scale inde- 
pendently of  length and time, increasing the dimension of the invariance 
group to 3. The main reason for this appears to be one of practical con- 
venience related to the magnitude of everyday laboratory quantities. Thus 
if the centimeter and second are chosen as basic units of  length and time, 
then for the above form f, the unit of  mass comes out to be 1.5 • 10 7 g 
(being the mass that induces an acceleration of 1 cm/sec 2 on another mass 
placed at a distance of  1 cm)--obviously a rather high value. 

The common method of  incorporating the new gauge freedom is to 
follow the recipe of Section 6 and introduce a new universal parameter ~,, 
setting 

and defining 

t ~ t p ! t f~ :X x / z ~  x . . - x v ,  n x el x . . . x  r x y--->X~ --2 
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by 

( . . . .  G) f 't r l ,  �9 � 9  rn,  m l ,  �9 � 9  rnn, e l , . . . ,  en, 
! 

= f~(rl . . . .  , r,, G m ' l , . . . ,  Grn~., G1/2el  . . . .  , Gll2e'~) 

,? 
The invariance group of f'~ is of dimension 3, and we may set 

fl'(A) = s,  /3'0") = t,  /3'(td,) = r,  /3'(e',) = r l / 2 s a / 2 t - 1 ,  /3 ' (G)  = r - l s S t  - 2  

for any /3' ~ Gr (r, s, t E R+), giving the usual dimensional structure of 
e~ and G ( M 1 / 2 L 3 1 2 T -  1 and M - 1 L a T -  2, respectively). 

Sometimes units are chosen such that charge scales independently, the 
universal parameter chosen for this purpose being frequently denoted 
(4~re0)- 1 and resulting in units of charge such as the Coulomb. Such re- 
scalings can even be adopted for apparently dimensionless quantities such 
as angle. An angle is defined as a ratio of lengths, but one  being a radial 
length while the other is an arc length there is no reason why one should 
not permit oneself to use different scales along these two directions. I f  the 
same scale is used we obtain the natural unit "radian," but if the unit of  
arc length is chosen to be in the ratio ~r/180 to the unit of radial length 
we obtain the "degree." Again a universal parameter could be introduced 
in all formulas to make them invariant under changes of  angular measure, 
but it is hardly common practice to adopt such a procedure. 

9. CONCLUDING REMARKS 

All the above discussion has been restricted to the Newtonian me- 
chanics of point particles, but the argument could be extended to field 
theories as well. A common procedure for this is to assume the existence of 
particles which interact with the fields, and in this way to throw all the 
dimensional arguments concerning the fields back onto those relating to 
the particles. This is done, for example, in electromagnetism where the 
electric field is defined by the acceleration it induces on a particle of  unit 
mass and charge. Another way is to abandon fields altogether and just talk 
of  direct action-at-a-distance between particles as is done in the Fokker-  
Wheeler-Feynman approach (Fokker, 1929; Wheeler and Feynman, 1945, 
1949). 

Finally a word about non-Newtonian physics. Length and time are 
fundamentally irreducible in Newtonian theory--no fundamental units for 
these physical quantities appear in any natural way. The main contribution 
Of relativity is that through the Lorentz invariance of  electromagnetism, the 
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velocity of  light emerges as a fundamental velocity. Thus the gauge 4 in- 
variance group of Maxwell's equations is reduced to dimension 1, and all 
physical quantities may be expressed in dimensions of just one physical 
quantity such as time [to see everything so expressed in terms of seconds, 
see the appendix of  Synge's book (1960)]. Quantum theory goes even one 
further; since the fundamental unit of  action h provides a connection 
between mass, length, and time, we see that all physical quantities can be 
made dimensionless (i.e., adopt units such that G = h = c = 1), the in- 
variance group of physics being reduced to dimension 0. 

Of course other fundamental quantities appear in physics, such as the 
mass of the proton rn~ and the elementary electric charge e, providing the 
"mysterious" values 7.685 • 10 -20 and 1/137.04 in the above units. Over 
the years various attempts have been made to "explain" these numbers. 
Notable among these is Dirac's (1938) hypothesis of cosmological variation 
of  constants to explain the smallness of rnp, Eddington's (1946) fundamental 
theory to explain these numbers in terms of  phase space arguments, and 
Wyler's (1969, 1971) group theoretical arguments for the value of the fine- 
structure constant. None of these, however, has met with anything like 
general acceptance. 

Let us conclude on a somewhat speculative note. AII laboratory physical 
measurements appear to reduce to the registration of some marker or pointer 
on a position scale, and the rate of change of such markings measured 
against the markings registered by some standard clock. Thus the reduction 
of  all physical quantities to a measurement of  length and time is not on the 
surface an unreasonable proposition. However, there is nothing in principle 
to say that there are sensible physical quantities that cannot be so reduced. 
The laws governing these quantities may provide more subtle physical 
effects than the mere dynamics of physical objects, but may also give rise 
to the more "static" effects, such as the value of  the fine-structure constant, 
whose explanations do not appear to fall within the scope of  current physical 
theory. It  is therefore not inconceivable that we may have been hampered 
so far in our attempts at reaching an acceptable theory of  fundamental 
constants by a mental attachment to reducing all physical quantities to 
space and time measurements. The next major theoretical advance in physics 
may well involve another reduction (similar to that incurred by relativity 
and quantum theory) of  all quantities, i.e., including these hitherto space- 
time-irreducible ones, to dimensionless quantities. 
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